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SUMMARY

The inviscid flow of a perfect gas over blunt-nosed axisymmetric

and two-dlmensional bodies at zero angle of attack has been calculated

numerically on an IBM 7090 computer. The computation consisted of the

Fuller blunt-body solution for the subsonic and transonic regions and

the method of characteristics for the supersonic region. The flow fields

about a number of blunt bodies were studied_ and the calculated results

showed good agreement with experimental shock-wave shapes, surface-pressure

distributions, and flow-field surveys.

IN_0DUCTION

Knowledge of the inviscid flow about blunt-nosed bodies traveling

at supersonic velocities is necessary for predicting their aerodynamic
and heat-transfer characteristics. Several numerical methods for calcu-

lating these flow fields have been developed and are to be found in the

literature; see_ for example, references i through 9. These methods are

generally similar in that each uses a special technique for calculating

the flow in the subsonic region and for providing initial data to begin
a method of characteristics solution for the remainder of the flow field.

One such method solves the subsonic flow problem by starting with a given

shock-wave shape and "marching forward" toward the body. The purpose of

the present report is to compare the results of this particular method

for a perfect gas with a number of experimental results and to show that

computations of this type are valid over a wide range of free-stream

conditions and body shapes.
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SYMBOLS

shock-wave shape parameter (see eq. (i))

shock bluntness (see eq. (i))

body diameter

body length

Mach number

pressure

impact pressure

cylindrical coordinates with origin at stagnation point on body

Reynolds number, V_d
Voo

radius of curvature of the shock wave at the plane or axis of

symmetry

temperature

ve io city

Cartesian coordinates with origin at stagnation point on body

ratio of specific heats

shock standoff distance

stream angle

Mach angle

kinematic viscosity

density

angle subtended by circular arc measured from stagnation point



Subscripts

st

CO

stagnation po Jut

free stream

DESCRIPTION OF CALCULATION METHOD

Solution in the Nose Region

The Fuller blunt-body solution (ref. 6) is used to obtain the flow

field in the subsonic and transonic regions. This solution is a modifi-

cation of Van Dyke's earlier work reported in references 7 and 8. The

modifications include the addition of a smoothing procedure in the cal-

culations, the use of two parameters to describe the shock-wave shape,

and a nonorthogonal sheared coordinate system as shown in the sketch.

Use of these modifications results

in solutions of the flow field for

a broader range of body shapes.

Although results for only two-

dimensional bodies are discussed in

reference 6, the method has been pro-

grammed for an IBM 704 or 7090 com-

puter for axisymmetric bodies as well.

The solution is at present restricted

to a perfect gas with a constant ratio

of specific heats.

The solutions found by both

Van Dyke and Fuller are commenced with

the assumption of a shock shape and

free-stream values of Mach number

and 7. In Fuller's case the shock

shape is given by the following equa-

tion (r =y for two-dimensional case),

r

R$

x+A

Rs - + R-_J B s

(1)

where B s is a measure of shock-wave

bluntness (Bs = I, A = 0 corresponds

to a sphere) and A is a measure of

the variance from a conic section.

_" RS

x+A

R S
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The equations of motion are integrated numerically, beginning at the shock

wave and proceeding toward the body until sufficient flow field and body

points have been calculated. If the calculated and actual body shapes are

not reasonably close, this procedure is repeated with another shock shape.

For a hemispherical nose, a solution can be obtained in two or three

attempts if the shock-wave shape is assumed to be a conic section (A = 0).

The summary of solutions in reference $ is helpful in this regard. The

parameter, A, can be used to refine these solutions or to obtain other

body shapes.

Input Conditions to Start the Method of Characteristics

Because of the instabilities in the solution for the nose region,

it is abandoned in favor of the method of characteristics when the flow

becomes supersonic. The input conditions for the method of characteris-

tics must, of course, lie entirely in the supersonic region. In fact,

they must lie downstream of the limiting characteristic line, the line

along which a disturbance cannot affect the subsonic portion of the flow

field. In this report, the input conditions were selected so that the

lowest local Mach number was greater than 1.03, and the locus of starting

points formed a line approximately normal to the streamlines. This pro-

cedure caused no difficulty, except in the vicinity of the body, I and the

difficulty there was overcome, for practical purposes_ by extrapolation

of the flow properties away from the body into the body itself. Addi-

tional points in the field were obtained by interpolation between points

calculated in the blunt-body solution. Unfortunately such a procedure

requires some individual attention for each case, and a general progra_

connecting the subsonic and supersonic regions has not yet been produced.

However_ replacing the "marching forward" technique, described previously,

by the characteristic approach, changed the method from one inherently

unstable to one inherently stable. Therefore, the errors brought about

by the required extrapolations and interpolations can be expected to damp

out. The fact that these errors were small and_ at least_ did not grow

is verified by subsequent calculations and comparisons with experiment.

Method of Characteristics Solution in the Supersonic Region

The method of characteristics consists of numerically integrating

the equations of motion for inviscid supersonic flow by use of finite

difference equations along Mach lines_ where the equations reduce to

ordinary differential equations. The equations programmed _n an IBM 7090

computer) for use in this investigation are those given by Hayes and

Probstein in reference 9. The equations for the two families of Mach
lines are

_l_e apparent divergence of some solutions in the transonic region

near the body is still, at the writing of this report_ being investigated.
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dp + de + _ sin e sin _ dx = 0 (2)

pv an r cos( +-0)

where c = i for axisymmetric flow and _ = 0 for two-dimensional flow.

The flow is rotational behind the curved bow wave and the entropy

varies from one streamline to another. The variation in entropy was cal-

culated by linear interpolation between the streamlines. It is noted

that this method can lead to difficulties if steep entropy gradients are

encountered and the characteristic mesh is large. Under these conditions,

continuity of mass between the free stream and the shock layer at any

axial station may not be satisfied. In this investigation imbedded shock

waves are not allowed in the flow field. The fluid may be either a per-

fect or a real gas in thermodynamic equilibrium. However, as noted

earlier, Fuller's bltuut-body solution is programmed for a perfect gas

with a constant ratio of specific heats; therefore, the present

calculations are limited to this case.

RESULTS AND DISCUSSION

The present method has been used to calculate the flow field around
a number of bltmt-nosed bodies for various values of free-stream Mach

number and 7. The first example, flow of air for M_ = 4.76 over a

hemisphere, is treated in some detail to illustrate the intermediate

steps of the calculation method. The remaining examples include only

the final results of shock-wave shape, surface-pressure distribution,

and flow-field surveys that are compared with experimental data.

_xample i: Hemisphere_ Air, 7 = 1.4_ M_ = 4.76

The first example considered is the flow field around a hemisphere.

This example is mainly a test of the Fuller blunt-body solution_ which was

obtained with the assumption of a shock-wave shape with B s = 0.500 mud

A = -0.045. The assumed shock-wave shape and the calculated body points

and sonic line are shown in figure i. The body points compare favorably

with a circle defined by _d = 0.0797 and d/Rs = 1.388. The calculated

sonic line is compared with the measurements of Kendall (ref. i0)_ who

determined the sonic line location by measuring the termination of a shock

wave generated by a small probe. Note that the measured points on the

sonic line always lie within the theoretically subsonic region. This

result may be peculiar to the measuring technique used by Kendall.

In order to continue the calculations in the supersonic region over

the rest of the hemisphere_ conditions were chosen on an appropriate line

between the body and the shock wave. The 7 points indicated in figure i

were used in the interpolation program to obtain 25 starting points for



the method of characteristics, a At the starting or matching point on the
body, x/d = 0.1318 and M = 1.04, the body ordinate and slope differed
from those for a hemisphere by 0.06 and 0.9 percent, respectively. The
portion of the hemisphere after the matching point was represented by a
fifth-degree polynomial with the ordinate, slope, and curvature at the
end points used as boundary conditions.

The flow field over the supersonic portion of the hemisphere was
then calculated by the method of characteristics. The calculated Mach
numberdistribution on the hemisphere is shownin figure 2 and is com-
pared with Kendall's data. In the region of the matching point between
the blunt-body solution and the method of characteristics, _ = 42.8° ,
the slope of the computedMachnumberdistribution is discontinuous.
This discrepancy indicates that the Fuller blunt-body solution maybe
slightly in error in this region. Near the 90o point on the hemisphere,
the experimental Machnumbersare lower than the calculated values. This
maybe due to viscous effects although Kendall points out that a three-
to-fourfold change in Reynolds numberhad negligible effects on his meas-
urements. In general, the present method appears to predict satisfactorily
the flow field about a hemisphere.

Example2: Hemisphere-Cylinder, Air, y = 1.4, M_ = 7.7

The second example studied is a hemisphere with a cylindrical
afterbody. This configuration has been the subject of numerous investi-
gations including that of Kubota reported in reference Ii. The shock-
wave shapepredicted by the present method is shownin figure 3 and is
comparedwith Kubota's measurements. It is noted that the shock-wave
shape is determined solely by the hemisphere since a characteristic line
originating behind the hemisphere-cylinder juncture never intersects the
shock wave. The calculated surface-pressure distribution is sho_n in
figure 4 and is comparedwith the data. Near the hemisphere-cylinder
juncture, the measuredpressures are higher than the calculated values 3
corresponding to lower experimental Machnumbersfound in the first
example.

In figure 5 the calculated impact-pressure distribution between the
body and the shock wave for x/d = 3.0 is comparedwith Kubota's measure-
ments. Except for a layer near the surface where viscous effects are
important, the results of the present inviscid flow-field calculations
agree well with the measurements. The mass-flow rate between the body
and the shock wave was calculated for x/d = 5.0 and was found to be
i percent less than the _ss-flow rate in the free stream. Thesecom-
parisons showthat the present calculation method predicts not only the
surface-pressure distribution and shock-wave shapebut also the variation
of _rg_erties between the body and the shock wave.

2Theuse of 50 starting points in someother examples led to a large
increase in computing time with no appreciable difference in the results.
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Example 3: Hemisphere-Cylinder, Air, 7 = 1.4,

M_ = 3.00, 4.03, 5.06, 6.03, and 8.10

The experimental results of Baer (ref. 12) are used to test the

present method over a range of Mach numbers, s In figure 6 the calculated

shock-wave shapes for M_ = 3.00 to 6.03 are compared with the measured

shapes. (The shock-wave shape was not measured for M_ = 8.10.) Com-

parisons between the calculated and measured pressure distributions for

M_ = 3.00 to M_ = 8.10 are shown in figure 7 for the hemisphere and in

figure 8 for the cylindrical afterbody. The effect of free-stream Mach

number on the afterbody pressure distribution is of interest. For

M_ = 3.00 the flow expands below free-stream pressure at the shoulder,

and the pressure on the cylinder asymptotically approaches the free-stream

value. For M_ = 4.03 the flow does not overexpand at the shoulder, but

rather the pressure decreases to the free-streamvalue at x/d = 1.7 and

reaches a minimum value at x/d ~ 5. For M_ = 5.06 and 6.03, the surface

pressure decays to the free-stream value further downstream and does not

reach a minimum within the model length of Z/d = 6.25. For M_ = 8.10

the surface pressure always remains higher than the free-stream value

within the model length. The pressures measured near the shoulder were

higher than the calculated value for all Mach numbers except 3.00.

Example 4: Hemisphere-Cylinder, Helium,

7 = 1.6667, M_ = 15 and 20

The flow of helium over hemisphere-cylinders is considered in this

example. The shock-wave shapes calculated for M_ = 15 and 20 are shown

in figure 9. Comparisons with measurements made in the Ames Hypersonic

Helium Tunnel show good agreement not only in the nose region but far

downstream. The good agreement is not unexpected in view of the previous

comparisons for air. Hayes and Probstein point out in reference 9 that

the effect of a change in 7 on the flow field is opposite to that of

Mach number; a flow with 7 = 1.6667 and very large M_ is roughly

equivalent to a flow with 7 = 1.4 and M_ - 3.

Example 5: Sphere - i_°55 ' Cone-Cylinder, Air_

7 = 1.4, _ = 4.95

The preceding examples have been confined to hemisphere-cylinders.

In this exam_le_ the present calculation method is a_lied to the blunted

SNo comparisons are made with the data of reference 12 at M_ = 1.99

because the flow in the supersonic region was not obtained. Although the

Fuller blunt-body solution could be found, the large extent of the sub-

sonic region made it difficult to find an appropriate input line for the

method of characteristics.



cone shownin figure i0. In order to obtain the flow field beyond the
sharp corner between the cone and cylinder, the flow field properties
were determined along a normal to the axis at the corner. A Prandtl-
Meyer expansion was then used to obtain new flow properties on the body
slightly downstreamon the cylinder. Theseproperties were then used as
input points to the method of characteristics to obtain the solution
downstreamof the corner. The calculated surface-pressure distribution
is shownin figure i0 and showsgood agreementwith the measurementsof
McConnell (ref. 13).

Example6: Blunt Ellipsoid-Cylinder, Air,
7 = 1.4, _ = 5.12

To demonstrate the present method for a nose shape other than a

sphere, the flow field has been calculated for a cylinder with a blunt

ellipsoidal nose defined by the following equation:

2.5

(3)

Good agreement is shown in figure Ii between the predicted shock-wave

shape (B s = 1.30, A = 0.40) and the measurements from a shadowgraph of

a free-flight model.

Example 7: Flat Plate With Circular Cylindrical

Leading Edge, Air, y = 1.4, M_ = 4.70

The preceding examples have been concerned with axisymmetric bodies.

The two-dimensional problem is more difficult because of the large extent

of the subsonic region. As a result, Fuller's solution becomes more

difficult to obtain. In addition, for a given body profile, the flow

does not expand as rapidly around the nose, and any small error in the

body input point may result in an imbedded shock wave.

A simple blu_t two-dimensional body is a flat plate with a circular

cylindrical leading edge, which has been investigated experimentally in

some detail by Tendeland, Nielsen, and Fohrman as reported in refer-

ence 14. The calculated shock-wave shape shown in figure 12 and the

surface-pressure distributions sho_n in figure 13 compare favorably with
the results of reference 14. Note that the calculations do not take into

consideration the boundary layer and, hence, predict surface pressures
that are lower than the measurements.



A numberof static- and impact-pressure surveys were taken in the
tests of reference 14, but none of those reported extend out to the shock
wave. In figure 14, unpublished impact-pressure surveys for x/d = 26.2
and 50.0 and a leading-edge diameter of 1/6 inch are comparedwith the
calculated impact-pressure distributions. Near the wall, the measured
impact pressures are lower because of the strong viscous effects. How-
ever, for the outer 80 percent of the distance between the body and the
shock wave, the impact pressure is predicted by inviscid theory. 4 A
check on the mass-flow rate showedthat continuity of massbetween the
free stream and the shock layer at x/d = 50 was satisfied within i per-
cent. It is significant that even at this large distance from the leading
edge, the flow properties are not constant between the body and the shock
wave.

Example8: Sphere - 18° Cone, Air, M_ = 17.8

Since the present calculations are limited to a perfect gas, the
real gas case is treated approximately with the assumption of an effective
value of 7 behind the shock wave. In figure 15 the shock-wave shape
determined from a shadowgraphof a blunted cone fired in the AmesSuper-
sonic Free-Flight Wind Tunnel is comparedwith shock-wave shapes calculated
for 7 = 1.24 and 1.32. For the given test conditions, the value of 7 at
the stagnation point was determined to be 1.24 with the thermodynamic prop-
erties of air given in references 15 and 16. In the nose region, good
agreement is obtained between the measuredand calculated shock shapes for
7 = 1.24; but downstream, better agreement is obtained for 7 = 1.32.
The calculated drag coefficient; with base drag neglected, was 30 percent
lower than the measuredvalue of 0.166. The higher measureddrag was
partly due to model pitching.

SUMMARYOFRESULTS

The inviscid flow of a perfect gas at zero angle of attack over
blunt-nosed axisymmetric and two-dimensional bodies has been calculated
numerically on an IBM 7090 computer. The method of calculation consisted
of the Fuller blunt-body solution for the subsonic and transonic regions
and the method of characteristics for the supersonic region. The following
results were obtained:

i. For the flow of a perfect gas, the results of the present
calculation method agreed well with experimental shock-wave shapes,
surface-pressure distributions, and flow-field surveys.

4The two disturbances in the outer portion of the shock layer for
x/d = 90 are shock waves emanating from the boundary-layer trip.
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2. For a case where real gas effects were significant, the

shock-wave shape was predicted well with a perfect gas solution calculated

with the value of 7 at the stagnation point.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., June 21_ 1962
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